
Binate Code WAP Approach to access Sequential
Pattern Mining for Web Log

1Ms. Abhilasha Vyas 2Ms. Priyanka Dhasal

M. Tech Scholar, PCST Indore Assistant Professor, PCST Indore

Abstract:Data Explosion is the major challenge which our
information industry is facing everyday. As World Wide Web
has lots of data there is a need for discovery & analysis of
useful information over the web. For this, we use web access
pattern which is sequence of accesses followed by users
frequently. Finding Web access pattern comes under
sequential pattern mining which is the process of applying
data mining technique to sequential database in order to
discover co-relation relationship that exist among ordered list
of events. Web access pattern tree (WAP) can be used to
analyze web log access sequences, which first store the original
web access sequences database on a pre-fix tree then WAP
tree algorithm mine the frequent sequences from the WAP-
tree in recursive manner by reconstructing intermediate tree
starting with suffix sequences & ends with prefix sequences .
We have an attempt to improve the efficiency of WAP tree
approach. In Binate code WAP , We totally eliminate the need
to reconstruct number of intermediate WAP-tree so that we
can reduces execution time considerably.

Keywords: WAP tree, data mining, sequential data mining,
frequent pattern tree

1 INTRODUCTION

Data Mining is the non-trivial process of identifying valid,
novel, potentially useful, and ultimately understandable
patterns in data. With the wide spread use of databases and
the explosive growth in their sizes, organization are faced
with the problem of information overload. The problem of
effectively utilizing these massive volumes of data is
becoming a major problem for all enterprises.
Traditionally, we have been using data for querying a
reliable databases repository via some well-circumscribed
application for canned report-generating utility. While this
mode of interaction is satisfactory for a large class of
applications, there exist many other applications which
demand exploratory data analyses. These applications
support query-triggered usage of data, in the sense that the
analysis is based on a query posed by a human analyst. On
the other hand, data mining techniques support automatic
exploration of data. Data mining attempts to source out
patterns and trends in the data and infers rules from these
patterns. With these rules the user will be able to support,
review and examine decisions in some related business or
scientific area. This opens up the possibility of a new way
of interacting with databases and data warehouses.
Sequential mining is the process of applying data mining

techniques to a sequential database for the purposes of
discovering the correlation relationships that exist among
an ordered list of events.
The objective of this work is to apply data mining
techniques to a sequential database for the purposes of
discovering the correlation relationships that exist among
an ordered list of events. Given a WASD (Web Access
Sequence Database),the problem to find frequently
occurring Sequential patterns on the basis of minimum
support provided. The application of sequential pattern
mining are in areas like Medical treatment, science &
engineering processes, telephone calling patterns.
Sequential pattern mining Web usage mining for automatic
discovery of user access patterns from web servers. It is
used by an e-commerce company, this means detecting
future customers likely to make a large number of
purchases, or predicting which online visitors will click on
what commercials or banners based on observation of prior
visitors who have behaved either positively or negatively to
the advertisement banners.

2. BACKGROUND
Sequential Pattern Mining comes in Association rule
mining. For a given transaction database T, an association
rule is an expression of the form X Y, where X and Y are
subsets of A and X Y holds with confidence , if % of
transactions in D that support X also Y. The rule X Y has
support in the transaction set T if % of transactions in T
support X U Y. Association rule mining can be divided into
two steps. Firstly, frequent patterns with respect to support
threshold min sup are mined. Secondly association rules are
generated with respect to confidence threshold minimum
confidence. Pattern Mining is of two types:
[1] Non Sequential Pattern Mining: The items occurring
in one transaction have no order.
[2] Sequential Pattern Mining: The items occurring in
one transaction have an order between the items (events)
and an item may re-occur in the same sequence.
WAP-tree, which stands for web access pattern tree. The
main steps involved in this technique are summarized next.
The WAP-tree stores the web log data in a prefix tree
format similar to the frequent pattern tree (FP-tree) for non-
sequential data. The algorithm first scans the web log once
to find all frequent individual events. Secondly, it scans the
web log again to construct a WAP-tree over the set of
frequent individual events of each transaction. Thirdly, it

Abhilasha Vyas et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7961-7964

www.ijcsit.com 7961

finds the conditional suffix patterns. In the fourth step, it
constructs the intermediate conditional WAP-tree using the
pattern found in previous step. Finally, it goes back to
repeat Steps 3 and 4 until the constructed conditional
WAP-tree has only one branch or is empty.

TID Web Access sequence
Frequent

Subsequence
100 pqspr pqpr
200 tptqrp pqrp
300 opqupt qpqp
400 puqprur pqprr

Table 1. Sequence database for WAP-tree

Thus, with the WAP-tree algorithm, finding all frequent
events in the web log entails constructing the WAP-tree
and mining the access patterns from the WAP tree. The
web log access sequence database in Table 1 is used to
show how to construct the WAP-tree and do WAP-tree
mining. Suppose the minimum support threshold is set at
75%, which means an access sequence, s should have a
count of 3 out of 4 records in our example, to be considered
frequent. Constructing WAP-tree, entails first scanning
database once, to obtain events that are frequent. When
constructing the WAP-tree, the non-frequent part of every
sequence is discarded. Only the frequent sub-sequences are
used as input. For example, in Table 1, the list of all events
is p, q, r, s, t, u and the support of p is 4, q is 4, r is 3, s is 1,
t is 2, and u is 2.With the minimum support of 3, only p, q,
r are frequent events. Thus, all non-frequent events (like s,
t, u) are deleted from each transaction sequence to obtain
the frequent subsequence shown in column 3 of Table 1.
With the frequent sequence in each transaction, the WAP-
tree algorithm first stores the frequent items as header
nodes so that these header nodes will be used to link all
nodes of their type in the WAP-tree in the order the nodes
are inserted. When constructing the WAP tree, a virtual
root (Root) is first inserted. Then, each frequent sequence
in the transaction is used to construct a branch from the
Root to a leaf node of the tree. Each event in a sequence is
inserted as a node with count 1 from Root if that node type
does not yet exist, but the count of the node is increased by
1 if the node type already exists. Also, the head link for the
inserted event is connected (in broken lines) to the newly
inserted node from the last node of its type that was
inserted or from the header node of its type if it is the very
first node of that event type inserted. For example, as
shown in figure 1(a), to insert the first frequent sequence
pqpr of transaction ID 100 of the example database, since
there is no node labeled p yet, which is a direct child of the
Root, a left child of Root is created, with label p and count
1. Then, the header link node for frequent event p is
connected (in broken lines) to this inserted a node from the
p header node. The next event q is inserted as the left child
of node p with a count of 1 and linked to header node q, the

third event p is inserted as the left child of the node q
having a count of 1, and the p link is connected to this node
from the inserted p. The fourth and last event of this
sequence is r and it is inserted as the left child of the second
p on this branch with a count of 1 and a connection to r
header node. Secondly, insert the sequence pqrp of the next
transaction with ID 200, starting from the virtual Root
(figure 1(b)). Since the root has a child labeled p, the node
p’s count is increased by 1 to obtain (p: 2). similarly, (q: 2)
is also in the tree. The next event, r, does not match the
next existing node p, and new node r:1 is created and
Inserted as another child of q node. The third sequence
qpqp of ID 300 and the fourth sequence pqprr are inserted
next to obtain figure 1(c) and (d) respectively.
Once the sequential data is stored on the complete WAP-
tree (figure 1(d)), the tree is mined for frequent patterns
starting with the lowest frequent event in the header list, in
our example, starting from frequent event r as the following
discussion shows. From the WAP-tree of figure 1(d), it first
computes prefix sequence of the base r or the conditional
sequence base of c as: pqp:2; pq:1; pqpr:1; pqp:-1.

WAP-tree|r, is built using the same method as shown in
figure 1. The new conditional WAP-tree is shown in figure
2(a). Recursively, based on the WAP-tree in figure 2(a), the

Abhilasha Vyas et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7961-7964

www.ijcsit.com 7962

next conditional sequence base for the next suffix
subsequence, qr is found as p(3). With p as the only
frequent pattern in this base, the frequent sequence base of
qr used to construct the next WAP tree shown in figure 2(b)
is p(3). This ends the re-construction of WAP trees that
progressed as suffix sequences |r, |qr and the frequent
patterns found along this line are r, qr and pqr. The
recursion continues with the suffix path |r, |pr. Thus, the
conditional sequence base for suffix pr is computed from
figure 2(a) as Ø, pq:3. This list is used to construct the
WAP tree of figure 2(c). The algorithm keeps running,
finding the conditional sequence bases of qpr as p: 3. from
the list, the conditional frequent events of pqr is only p: 3.
Then, the conditional WAP-tree|qpr is built as shown in
figure 2(d). Now back to completing the mining of frequent
patterns with suffix pr, figure 2(c) is mined for conditional
sequence bases for suffix ppr and we get NULL.
The conditional search of r is now finished. The search for
frequent patterns that have the suffix of other header
frequent events (starting with suffix base |q and then |p) are
also mined the same way the mining for patterns with
suffix r is done above. After mining the whole tree,
discovered frequent pattern set is: {r, qpr, pqpr, pr, pqr, qr,
qb, pq, p, pp, qp, pqp}.

Figure 2. Reconstruction of WAP trees for mining

conditional pattern base r.

3. RELATED WORK
3.1 Binary Coded Web Access Pattern tree
Approach)
The tree data structure, similar to WAP-tree, is used to
store access sequences in the database, and the
corresponding counts of frequent events compactly, so that
the tedious support counting is avoided during mining. A
Binary code is assigned to each node in modified WAP-
tree. These codes are used during mining for identifying the
position of the nodes in the tree. The header table is
constructed by linking the nodes in sequential events
fashion. Here the linking is used to keep track of nodes
with the same label for traversing prefix sequences. This
mining algorithm is prefix sequence search rather than
suffix search.
3.2 The Algorithm
Input : Access sequence database D(i), min support MS (0< MS ≤
1)
Output : frequent sequential patterns in D(i).
Variables : Cn stores total number of events in suffix trees, A
stores whether a node is ancestor in queue.
Begin
Scan D(i) to discover frequent individual events L;
Scan D(i) again .Create a root node of Tree T.
code(root)= NULL;
count = 0; {
For (each access sequence, fs in D(i)) {
Extract frequent subsequence F=(fs1fs2 . . . fsn) by removing all
events that are not in L;
current node -> leftmost_Child(root);
for (k=1 to n) {
if (current node = NULL)
{Create a new child node with position code equal to “1”
appended
To position code of parent of current node ;}
elseif (current node = fsk) { NdFd = true ;}
else { make current node point to current node sibling}
}
if (NdFd = true)
{count (fsk) ++;
Make current node point to fsk ;}
Else {create new child node with position code of current node
with
“0” appended at the end;
Make current node point to new created node ;} } }
From root node, do a sequential Traversal of Tree T to make
appropriate linkage queue;
PATTERN_DIS (Suffix tree roots STR, Frequent sequence FS);
end;
PATTERN_DIS(R, F) {
If (STR=empty) return;
for (each suffix tree of event in L) {
Save first event in ei queue to A;
if (event ei is descendent of any event in STR, and is not
descendent of A)
{Insert ei suffix tree header set STR’;
Add count of ei to Cn;
Replace the A with ei. ; }
If(Cn > MS)
{Append ei after FS to FS’;
print (FS’);
PATTERN_DIS (STR’,FS’); }

Abhilasha Vyas et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7961-7964

www.ijcsit.com 7963

4 EXPERIMENTAL RESULTS
This experiment uses fixed size database and different
minimum support .The datasets and algorithms are tested
with minimum supports between 0.8% and 10% against the
60 thousand (60 K) database.

From Table 2 and figure 7, it can be seen that

 time in secs at different supports
Algorithms 2 3 4 5 10

WAP 745 505 325 285 145
Modified 225 150 100 94 47

WAP
Table 2. Execution times for dataset at different minimum

supports.
The execution time of every algorithm decreases as the
minimum support increases. This is because when the
minimum support increases, the number of candidate
sequence decreases. Thus, the algorithms need less time to
find the frequent sequences. The modified WAP algorithm
always uses less runtime than the WAP algorithm. WAP
tree mining incurs higher storage cost (memory or I/O).
Even in memory only systems, the cost of storing
intermediated trees adds appreciably to the overall
execution time of the program. It is however, more realistic
to assume that such techniques are run in regular systems
available in many environments, which are not memory
only,but could be multiple processor systems sharing
memories and CPU’s with virtual memory support.

Figure 3. Execution times trend with different minimum
supports.

Now, databases with different sizes from 20 K to 100 K
with the fixed minimum support of 7% are used.

 Different changed transaction size

Algorithms 20k 40k 60k 80k 100k
time in sec

WAP 146 264 310 440 535

Modified 45 72 95 141 175

WAP
Table 3. Execution times trend with different data sizes.

Figure 4. Execution times trend with different data sizes.

5 CONCLUSION
In this paper, we analyze the problem of sequential pattern
mining. Here after discussing the two approached it is clear
that the modified version is more efficient than the web
access pattern tree approach. This presents a discussion of
the advantages and disadvantages of both approaches
conducted by comparing the performance with help of
graph.
The modified algorithm eliminates the need to store
numerous intermediate WAP trees during mining. Since
only the original tree is stored, it drastically cuts off huge
memory access costs, which may include disk I/O cost in a
virtual memory environment, especially when mining very
long sequences with millions of records. This algorithm
also eliminates the need to store and scan intermediate
conditional pattern bases for re-constructing intermediate
WAP trees. This algorithm uses the pre-order linking of
header nodes to store all events ei in the same suffix tree
closely together in the linkage, making the search process
more efficient. A simple technique for assigning position
codes to nodes of any tree has also emerged, which can be
used to decide the relationship between tree nodes without
repetitive traversals.

REFERENCES
[1] Agrawal, R. and Srikant, R. Mining sequential patterns.

In Proc. 1995 Int. Conf. Data(ICDE’95), p.3–14, March 1995.
[2] Agrawal, R. and Srikant, R.,. Fast algorithms for mining association

rules in large databases. In Proceedings of the 20th International
Conference on very Large Databases Santiago, Chile, p.487–499,
1994.

[3] A. Nanopoulos and Y. Manolopoulos. Mining patterns
from graph traversals. Data and Knowledge Engineering, 37(3):243–
266, 2001.

[4] Etzioni, O. The world wide web: Quagmire or gold mine.
Communications of the ACM, p.65 – 68, 1996.

[5] Han, J., Pei, J. et al. FreeSpan: Frequent pattern projected
sequential pattern mining. In SIGKDD, p.355–359, Aug. 2000.

Abhilasha Vyas et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7961-7964

www.ijcsit.com 7964

